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Xirchhoff's well known theorem on the uniqueness of the equilibrium state of 
a linearly elastic medium makes it necessary to regard any attempt at Con- 
structing a theory of bifurcation of equilibrium for such a medium as loglc- 
ally unjustifiable. Construction of a theory of bifurcation must neCe%%arllY 
be based on the lnvestigatlon of equilibrium state8 which are ClOSe to the 
equilibrium state being studied for a nonlinearly elastic solid. 

In Section 1 a auvm~ry of notation Is given and the PormUlaS of tensor 
analysla which will be applied later are recalled. In Sections 2 to 4 the 
required geometric and statical relations are given for a nonlinearly elastic 
isotropic body. In Sections 5 to 7 a derivation of the equations for equl- 
llbrlum states near a previously known equilibrium state la presented. This 
theory is applied to the case of a compressed bar considered a8 a three- 
dimensional body .Sn Sections 8 and 9, with the simplest specification of the 
strain energy density expression. 

El value 

The bifurcation value of the parameter 
e uomprerrslve force) turns out, of course, to be very near the Euler crlt- 

, and coincides with it If the cross-sectional dimensions of the 
bar are neglected ln comparlaon to its length. 

1. 19oBatlon. Two states of a volume of a continuous medium are consld- 

ered: an initial state (the volume V bounded by the surface 8)anda 

final state (the volume V bounded by the surface S ). A point of the 

medium is %?eclfled by the material coordinates p', g', ps. Its radius 

vector in a fixed Cartesian system of axes 0XP.Z which 1% equal to I(!?', 

!Ja, !Z”) in the u-volume 1% kansformed into the radius vector R(ql, qa, q3) 
in the Y-volume. The coordinate vector bases 

are introduced In the v- and ~-volumes, respectively. In term% of these 

matrices R&rlI = jG*rl:j and iG‘k/I = i)R,-Rki of the covariant components 

*) The contents of Sections 1 to 4 of this paper were reported in more ex- 
tended form in a seminar of the Institute for Problems of Mechanic%, Febru- 
ary 10, 1966. 
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of the metric tensors Q and 0 of 

g'k and G'k of the Inverse matrices 

these tensors, In terms of which the 

rS = g%k, 

Lur’6 

these volumes,are defined. The elements 

give the contravariant components of 

associated coordinate bases are defined 

R’ = GskRr (1.2) 
The mixed components of the metric tensors 0 and 0 are denoted, as 

always, by 
gr” = r* . rk = g6’grk = 

1 s=k 

0 s+k 

and the dyadlc representations of these tensors are written in the form 

60 = &$rk = gskr8rk = rsrs = r,r’ (1.3) 

G = GSkR”Rk = GekR,Rk = R’R, = R,R* (1.4) 
The tensor 0 plays the role of the unit tensor in the u-volume, as does 

0 in the V-volume. Multipllcatlon by 0 or 0 on the left or right of 

any tensor specified in the corresponding volume results in the same tensor. 

Differential operations on tensors in the u- and V-volumes are carried 

out with the aid of the nabla operators, the symbolic vectors 

V=r’-&, V”=R’-& 

For Instance, the tensor of the second order which is the gradient of a 

vector 8 Is represented by the dyadic product 

Va = r* -$ = r8rkVsak = rsrkV6ak, (ak = a-rk, ak = a-rk) (1.5) 

Va”=R:$ = R*RkVsoako = R*RkVsoaok, (ak’ = a-Rk, a Ok = a-R&) (1.6) 

Operations in the V-volume (with the metric tensor 0 ) are Indicated by 

the superscript ' here and further on in Sections 2 to 4. Covarlant dlf- 

ferentlal operators are denoted by v, and VP , so that 

From what has been said we have also 

Va = r*rfV8at = r’rtVsaf, V”a = RBRtVloato = R*RtV,oaot 

In addition we give the expression for the divergence of a second-order 
tensor 4 . It Is written In, say, the metric of the v-volume In the form 

diva= V-Q = r’.--$-r,r,qmt = 

Recalling also that 

we arrive at a relation which will frequently be applied In what follows 
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The determinants fGet 1 and 117,~ 1 are denoted by g and G 

elements in u- and V-volumes are determlned by the expressions 

and it follows from the law of conservation of mass that 

. 

(1.7) 

The volume 

0.8) 
where pa and 9 are the densities in the initial and final states. 

The transpose of a tensor 0 is denoted by @*, e.g., 

(Va)* = rWV,ut (1.9.) 
The differential of a vector 1 is expressed in one of its forms as 

da = dr.Va = (Va)*-dr = dR.V”a = (V”a)*.dR (1.10) 

2. Mmruzrra of doformatlon. In the geometry of the v-volume we compute 

the tensor gradient of the radius vector R of a point in the V-volume, and 

also the transpose of this tensor. In accordance with Equations (1.1),(1.5) 

and (1.9) VR = r”Rs, (VR)* = Rsrs (2.1) 
From this the two tensor measures of deformation which will be used below 

are defined 
ax = VR . @R)* = rsRs.Rhrk = G&r@ (2.2) 

M SI (VR)*-VR = R#-rkRk = g8kR,Rk (2.3) 
The tensor G" is defined in the metric of the v-volume, # in the V- 

volume. The invarlants of these tensors are equal, since the eigenvalues of 

the smtric nlatrlces of the products AR and &4 of matrices A and P 

are equal. We shall limit ourselves here to the introduction of these two 

measures of deformation. 

We note that the covariant components in the v-metric of the measure of 

degormation 0' are equal to the covariant components of the metric tensor 

0 of the V-volume. However, these are different tensors. Thus, the contra- 

variant components of the measure of deformation are computed according to 

the general rule for transformation from covarlant to contravariant compo- 

nents in the v-metric I;xst = gskgtfGk, + Gst (2.4) 
Analogously, 

Mat = gst, 
getting dr = e I/Car/j== eds 

M,t = t&‘%rgkr #&t 

-- 
)TdR-&? = d5’ = fdr.VR.(VR)*-dr = ds )fe.ffx.e 

so that the change of a line element of the ~-volume! is determined by the 

measure of deformation 0'. 

In the v-volume consider the elementary tetrahedron MAA;AIAr havtng edges 

MA.- r,aqs extending from the vertex H . The oriented area A1,A& is given 
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by the vec'cor &xi0 , where 21 is the unit vector normal to the area. Then 

ndo = '12 (rl X r2dqXdq2 + r2 x r~~~~~~~ + r3 x r~d~~~t) =_ 

so that 
= fg (r1dq2-dg3 + r2dq3dy1 + FdqQq‘J) 

f/gdq1dq2 = n&o, l/$q2dq3 = nldo, I/gdq3dq1 = Iz%do, n,=n.r, 
In exactly the same way, for the V-volume 

MO = t'c (R1dq2dq3 + R2dq3dql+ R3dg*dq2~ 

‘)Tcdg’dgB = NsXdO, v/IGdq2dq3 = NIxdO, )f&lq%@’ = N%“dO, iv,” =N. R, 

so that 
NdO = f”clgRBnado, ndo = 1/flr’N,“do (2.5) 

and further 
dO 

do= g ( 
~Gs~~~~~~, 

do 
dO =‘ (+ &1K.Nj”’ (2.6) 

This last equation determines the geometric significance of the measure 

of deformation &f. 

The following expression for the unit vector s normal to the Surface S 

will be applied m&ny times below 

N ~~~=R’la,=R8r,..=Vo,., (2.7) 
where v"r is the gradient of the radius vector of the u-volume computed 

In the metric of the V-volume; this is the Inverse of the tensor VR 

0% .VR = RBr,.rkRk = R”R, = Q, V”r = (VR)-1 (2,8j 

With the aid of the t"ensors vOp and (V'r)*, the measures of deformation 

g” = v”r l (V’r)* = g,,R”Rk = M-l, m = (V”r)*.T’r = G%,rl = (G”)-’ 

are defined as in (2.2) and (2.3). 

It is obvious from these relations that the eigenvalues of the tensors 

#"and j$#, which are equal to each other,GBX =&$#are equal to the IWiPrO- 

cals of the elgenvalues g,” ==I?&, of the tensors g and 93% 

G," =: M, = &,X)-I = m,-I 

From this fact the equations which relate the principal invar~ant;s of 

these tensors follow (2.9) 

fI(W =& 12(g"), MG")= & MQ"), J3W") = x& 

But, according to (2.2) and (2.8) 

II(W) = G,&.rk = ggkGlk, II (8”) = gskR8.RR = gskG8k 

and, defining f3 (Gxf as the square of the volume ratio d'I/& , we have 

MGx)= g6kGkr 12(@) = $ gskGsk, I3 (c;r") = f (2.10) 

3, m atrrme t-or, ~hj.6 symmetrio tensor T =!Z'* of second order 

1s usually t&fined in the V-volume by Its contravariant Or mixed components 
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2’ = PtR,Rt = rt”8R,R’ (3.1) 
Its product with the oriented area vector Xd0 in the Ir-volume deter- 

mines the force acting on this area &,&J 

tlv = N.!P = T-N = P'X',R, = z~YV'~R~ (3.2) 
The equation of equllibr5um of a volume of the continuous medium is writ- 

ten in the form V”.T+pK=O (3.3) 
where X is the body force vector (per unit mass). From (1.7) and (1.8) 

the last equation may be represented In the forms 

The equation of equilibrium on the surface ,S is adjoined to the above 

which, from Equations (2.7) and (3.2), is written in the form 

where B Is the external surface force per unit area of S . 

The virtual work per unit v-volume of the external forces x and B can 

be represented as 

In a perfectly elastic body this quantity Is equated to the variation of 

the strain energy dentity A , which is equal to the variation of the lnter- 

nal energy density of the body for an adiabatic process of deformation and 

to the free energy in an isothermal process. The specification of this quan- 

tity in terms of the components of the measure of deformation ax and the 

temperature (in an adiabatic process) or the entropy (in an Isothermal one) 

determines the equation of state of a perfectly elastic body 

(3.7) 

4. TJxo l quritim of rtate oi 8 mrfootly elartio lrotroplo body. In an 
isotropic body the strain energy density A depends on the Invariants of 

one or the other measure of deformation. These invariants are expressed in 

terms of each other In (2.9). Let us assume that A is given In terms of 

the invariants lk (ax) = ik. 

Then, according to Equation (3.7), 

i s aA ark 
2 ==t 2 TJg- 

k rt 
k=l 

From (2.10) we have 

ai2 
acs,== I& - (cy = I&” - p&‘G,, 

(without going into the details of the derivation of these from formulas 
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which have been given). The equation of state of a perfectly elastic lso- 

tropic body can then be written in the form 

where the "generalized modull of elasticity" are denoted by c@~ 

Cc*, =$&+A+& c(l) Z g , CM) = 1 aA 
2 s azs (4.2) 

Noting that from (2.3) 

and recalling (3.1) and (1.4), we arrive at the equation of state in Finger's 

form. 
'/a Jf/G/gT = &'~iW-- d')&P + d-1)63 (4.3) 

It is natural to express the tensor F in terms of tensors defined in 

the Y-volume. It can 81SO be related to the Almansi measure of deformation 

g" ; for from (2.8) 

‘/a v/clgT = c(O) (g”)-l -c(l) (g")-2 + c-l@ = ~o)G-&)gx + e(a)gX2 (4.4) 

The negative powers of the tensor g" h re are expressed in terms of 

positive powers (e.g. with the aid of the Cayley-&Milton theorem). The 

generalized moduli 

e(O) = - Is’ aA 
zg’ 

which are obtained 

of (2.9). 

Cf*) are determined by Equations (4.5) 

aA 
e(l) = W + 11 

, aA 
m, e(s) = $$ , 

a 
(Ik’ = Iic (8”)) 

by replacing the variables I, by the I,' with the aid 

Example . For a bar loaded by forces which are uniformly distrlb- 
uted on its ends and are directed along the axis of the bar OQs, the point 
transformation from the Initial state to the fin81 one (from the u-volume to 
the y-volume) Is given by Formulas 

zl = alal, 5% = deeat sc, = asa, (u,=COnSt) 

where the a, are the Cartesian coordinates in the n-volume, which play the 
role of the material coordinates. Here g = E, the unit tensor 

Gss=as2, @S _-Q -2 
- s ' GSk=Gsk=O for s#k 

SO that 
g = 1, G = Is = a~~a&Q, II = aI2 + aa + as2, Za = alhaa + a2aaa $ a$+@ 

and, from (4.1) and (4.2) the nonzero contravariant components of the tensor 
are 

~/saIdzaeP= co- cWas2 + J-lfas-2 (s=i, 2, 3) 

The equatlon of equilibrium (3.3) is satlsfied, since T is a constant 
tensor. 
surface, 

From the condltio~~~~~t7~~~fface tractions are absent on the lateral 
it follows that = 0 throughout the volume, so that 

(1~9 ap and 
&O) - c(')ala + &-1)dl-2 = 6, %?a12a8r 

o= = c(o) _ ,WU82 + ,wa8-2 (4.6) 

The physical component t33 of the tensor is equal in this case to dss+ss; 
therefore, the axial force Q = St95 = S,a,2t", where So is the area of the 
original cross section of the bar, is expressed in the form 

Q zzz 2 ( C%Y~ - CUDS + $) ) s, (1.7) 

We shall specify the expression for the strain energy denslty lri a form 



which Is equivalent (*) to the expression in the linear theory of elSStfcitY 

A = V8 (h + +) I,“- - l/g (3h + +) 1, - ‘I,@, (4.8) 

where X and p are constants. Then 

cm = ya (Al, - 3a - @), ,(I) zz - l/# ( J-1) = 0 (1, = W + asa) 

so that from (4.6) 
c(o) - &12 - i (Ml - 3h - 2~) + $ aI2 = 0, P = p $ (as2 - a?) (4.9) 

From the first equation we find the relatlon'connectlng aI2 and aJ2 

a2 + vasa= Y + 1 
C 

h 

y- 2o.+Ir1 > 
(4.10) 

and from (4.7) and (4.9) we find 

Q =% E&as (a$- l), E=2p(i $Y) (4.11) 

or, noting that aJ= 1 + bs, where b3 IS the unit aXlaI extension, 

Q = ESo& (1 + 6~) ( ii '1~ 8s) 

This IS the nonlinear law of behavior of a stretched Specimen under the 
assumption that the strain energy density Is defined according to (4.8). It 
reduces to the linear Hooke's law for baa1 . The notation A, ~1, V, and 
E was, of course, chosen by anal0 

"3 
with the linear theory. Further on, 

In Sections 8 and 9, Equations (4.9 to (4.11) will be applied In the case 
of compression; then aLg< 1 and a1> 1 . 

5. 8uperporlt:oal of 4e?ormtloxl8, A displacement defined by the vector 

VW Is given to the points of the V-volume, where u 1s a small parameter. 

In the calculations given below, only terms of first degree In this parameter 

are taken Into account. The radius vector of a point In the resulting V’- 

volume which Is bounded by the surface S' Is equal to 

R’=R+pw (5.1) 
and the vector basis Is given by the triad of vectors (**) 

R,’ = R, + p ?J!- = R, + pR*V,zq 
w 

(5.2) 

The covarlant components of the metric tensor G’ In the v'-volume are, 

therefore, equal to 

Gsk’ = R,’ .Rk’ = Gsk + p (VSUQ + Ok%) = Gsk. + 2,.&k (5.3) 

where Q,~ are the covarlant components of a linear strain tensor 

s = def W = ‘/2 [VW + (VW)*] = 1/2 RSRk (vswk + vk?,?,) 

The covariant components of the tensor G’ are determined from the rela- 

tion 
&lb = G'S'G;k' = (GSr + /,bq”) (Grk + 2~4 = Gk” + pqsrGrk + ~~LC”‘“E,~ 

so that, inasmuch as Gkf8 =G," 

qSrGrk + 2GSrErk = 0, G”“ = G” _ 2pG”‘Gk’E,k (5.4) 

l ) In the linear theory the energy is given in terms of the lnvarlants of 
the strain tensor and not those of the measure of deformation. 

z;!, ',nv;:~,"hatt;,oI;$~~ o the calculations are carried out In the metric of 
; is, therefore, omitted. 
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The vectors of the associated basic are now constructed In accordance 

with (1.2) 

R" =-_ G‘frRrf = R' - 2~RQG’%zql, + GkfRaVk~q = Rf - GK'RqVq~k 
To the same order of accuracy, the metric tensor of the V‘-volume turns 

out to be 

G' = Rt’R” = RtR’ + p (R”R’Vteo, - R’RT’,urt) = RtR’{ = 43 (5.5) 

The determinant 4' is computed most simply from the relation 

C’ = G + ~1 ($f),, = G + p E ‘+ = G + 2pGG8’e,t 

80 that 

G'= G(i+ 2p2p), 1/F = I/q1 + pi+), i3 = Ggfest 153) 
where 6 is the first Invariant of c . 

The expressions Sor the principal invariants of the measure of deforma- 

tion 0"' are computed from (2.10),(5.3),(5.4) and (5.6) 

IIIG"') = II+ 2~g%r, 1s (G"') = Is(i + 2~x9 

r&P') = Ia + 2p(t312-- 13ga~G8'Gk"8t,) (5.7) 

80 that the volume element on the V-volume is 

dz' = (a + @)dz, dz = Jf/T;dqVq%qS 

The vector of the oriented area can be written In the following form, in 

accordance with (2.5),(5.5) and (5.6): 

N'dO' = I/$ R'W&l = (N + p [#N -IVNfRQV,wt]j do 

From this we find that 

d0 
- = 1 + p (e - NWV,W,), 
d0 

N'aN +p(NN'N'- N’R’) V,.wt (5.8) 

Recalling the definition of the tensor VW 

VW = R’R’V,wt (5.9) 

we may also write (5.8) in the form 

N'= N+p(NN4'w*N- vw.N)= N+pN x [N x(Vw.N)l (5.foj 

As was to be expected, the vector N' differes from N by a vector which 
lies in the plane of the area. Let us now also develop an expression for 

the measure of deformation M' which will be required below. From (5.51, 

(2.3) and (5.8) we have 

M' = gskRs’Rk’= M +p ((Vw)*d3-+M~+'w) 
whence we also have 

(5.11) 

M'2 z BP + ~(('W.VW -j- 2.M-*e*i7r4 + fVw)**W) (5.12) 
6. me rtror8 tanror and ths equilibrium squ&tioW, The difference of 

the contravariant components of the stress tensors in the V’- and V-Volumes 



will be considered. The stress tensor T’ in the V'-volume and In the met- 
ric oft?.at volume is then determined from (5.2) by Equatio'n 

T’ = r’$‘Rs’Rt’ = T + ppsfR,Rt + p.zsl (RqRtVswq + R,RqVtwq) = 
= T,+ 1” (p”‘R,Rt + T.Vw + (VW)* .T) = T +pS (6.2j 

where s Is the symmetric tensor of the additional stresses 

S = p”‘R,Rt + T.Vw + (VW)*-T (6.3) 

The equation of equilibrium In the V'-volume Is written In the form 

div’ T’ + p’K’ = 0 

Here p'X' Is the body force per unit volume and X' is the body force 

per unit mass 
K’ = K + pk (6.4) 

and the density p' In the V'-volume Is determined, according to Equations 

(1.8) and (5.6), by Equation 

p'fl =p1/G=P&g (6.5) 

Referring to (3.4) and (6.1), we have 

- - (J&?R,‘) + p’ (K + pk) = 0 
JfL f3;s 

Substituting the values of G', Z'*', &' from (6.1),(5.6) and (5.2), we 

find 
W%Rt -I- W%W,>] +pov;(K+ pk)= 0 

or, from (3.4) 

+ fl W’Rt + +VwqRq + p”Rt) + po fik = 0 

But from (5.9) and (1.7) 

!Z'.Vw = R,Rati’Vpq, div 2 *VW = & --$ f&“VtwaRq 

and the preceding equation may be written In the form 

div (p*‘R,Rt + W + T-VW) + pk = 0 

Therefore, by Introducing the nonsymmetrlc second-order tensor 

Z = S+tYZ’-(Vw)*.T W3) 

the equation of equilibrium may be put Into the form 

divZ+pk=O (6.7) 
We now turn to the equation of equilibrium on the surface S' . 

The surface for* per unit area Is determlned by Equation 

F’ = F -g + Pf 

where I Is the surface traction on s . Then from (3.2) 

F -.$+pf=N’.T’=N.T+(N’-N)~T+N=(l’-T) 

so that, referring to Equations (5.8),(5.10), (6.2) and (3.2), we have 
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F[1--p((6+N.Vw.N)]+pf=F+p[FNJ7w.N-((vw.&).T+ N.8) 

Remembering now that VW-N =N.(vw)* from (6.6), we arrive at Equa- 

tion 
N.[# + W-(Vw)*.T]- N.I:=f (6.8) 

Thus, the equation of equilibrium and the boundary condition are expressed 
In terms of the same nonsymmetrlc second-order tensor I: . 

7. The l aWtion oi rtrtr. The equation of state for the tensor T’ is 
written In the form (4.3) 

l/s f&T@ = c(0)'M'- ~(1)'M'a + c(-0'6 

Referring to (4.3),(5.5) and (5.6), we can write this equation In the form 

'12 I'G /g IV" -T) +@T] = 

= p(bwM - b(l,.Jf jm b(-UG) + &0(,&f - &f) - c(l)[kfr2 - Ma) 

@CO, = c(O)’ - c(O), p~cu =I CO)’ - c(l), y&l, = cc-l)'- cw 

From Equations (6.2),(6.6) and (5.l2), we now obtain 

l/z r/G f g Z = b(@M: - bWM2 + b(-I&’ + c(~)Ag. vw - 

- c(l) (Me. VW + 2M ’ i? * M) - d-1) (VW)’ 

The expressions for the WmodullW b(s) remain to be formulated 
(7.1) 

Here, according to (5.7) 

i(l) = 2grf8,t, i12) = 2 (61, - Igs~GStGkQetq), its) =: 2136 (7.2) 
@A and with the notation b(") = _ 

ar,ar, 
we have 

b(o) = ik (b(lk) +llb(Bk))+i(l)c(l),b(l)=i(k) b@W, bt-1) -_ itkj~3b(3k) + i(3) _$?_ 
8 (7.3) 

Q? means of Equation (7.1) the tensor I: Is represented In the form of 

a linear differential operator of first order on the vector w . Substltu- 

tlon of this operator Into the equation of equilibrium (6.7) and the bound- 

ary condition (6.8) leads to a linear system of three second-order dlfferen- 

tlal equations In the V-volume with linear boundary conditions on the surface 

S In the absence of addltlonai body forces and surface tractions (k = 0, 

f = 0). This linear boundary value problem is homogeneous and the question 

Is to determine the bifurcation values of the parameters of the Initial state, 

e.g. the load parameters IC or B , for which nontrivial solutions (W # 0) 

of the problem exist. 

tensor g In the form 

energy density Is given In the form 
1s nonzero. Taking Into account that 
we can write the expression for the 

alaS E = Ag”e,,M + p (- al*M*Vw + M2eVw + M*[Vw + (Vw)*).M) 
where 
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We then arrive at the following express~ions for contravariant components 
of c : 

apup = he + qLa1w1, cclh,a~~ = 16 +‘2+r3aw2 

al~lz = al%@ = p &ws + a,~,) (@ = Q4 + 4%u, 4%) (8.1) 

a~~18 z= p b-v% + udr a&pa = p (4~~ + W,) 

These are formulas which are analogous to Hook's law for the linear theory 
of elasticity; in contrast to this 

The equation of equilibrium (6.7) are written in the form (8.3) 

QJn + Qrn + i?aaal = 0 1 axala + a,P + QP = 0, ap + ap + ap =;'O 

The boundary conditions (6.8) on the lateral surface of the bar are 

N,u'" + N,@ = 0, N,d’ + N,u” = 0 9 N,al* + Naum = 0 (8.4) 

Here N,= N*R, are the covariant components of the unit normal vector N, 
with N,=O; on the ends N3# 0 , and the boundary conditions on the upper 
free end a3= I are written in the form (for a cantlliver beam) 

a,= I; $1 = () , a"=o, fJ=-0 (8.5) 

Substituting (8.1) and (8.2) Into the equation of equilibrium (8.3), we 
arrive at a system of linear differential equation for the components of 
the vector w 

(h + I4 62% + p (-2 + a$ a22w*) 1== 0 (02 = L-42 + 322) 

(h+p)4%+p[DBWs+(Z-~)w~]=o 

(8.6) 

which differ from the equations in terms of displacements In the linear 
theory of elasticity and reduce to them for as= a1 . 

We shall seek the first group of special solutions in the form 

WI = a,@ + wro, w2 = aaa + wpo, ‘us = k&-D (k WI”. w: = comt) (8.7) 

Substitution into Equations (8.6) leads to Equations 

1 - 2v 
9 =__&* 

2(1--v) (8.8) 

This last quantity decreases monotonously from 3 to 0 as v Increases 
from 0 to * . If we now restrict the choice of the constant k by the 
conditions 

(8.9) 

we arrive at the differential equatlons 

where Cs2 are the roots of Equation 

(8.11) 
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The dlscriminant of this equation may be represented in the form 

a=(1-~~)2~~.-a(2-*q)~+92j (8.12) 

and the roots of the quadratic in brackets are 

-- 
-(1/l-s--1)2, 

The quadratic is negative between these roots. For a compressed bar 
a12/as2> 1 so that for all values of p 
crfmlnant (6.12) is negative for 

in the interval (0, B) the dis- 

1 < aI"/as2<(1/$ + 1)2= 2.914 

and for these values of this ratio, the roots cl" and c2" are complex con- 
jugates. We seek a second group of particular solutions of the system (8.6) 
in the form 

XL'1 = a,YI, w2 = - a,y, ws = 0 (6 = 0) (8.13) 

where 'P is determined by the differential equation 

Y=O (8.14) 

The expressions for the components of the tensor E corresponding to 
the system of particular solutions (8.7) reduce to the following form, taking 
account of (8.10): 

(8.15) 

where the k, are expressed in terms of the 5,' with the aid of (8.9). 

For the solution (8.13), the expressions for the components of this ten- 
sor are 

1 2 
g ai2a& = - - ai2a&a = 2alazY 

P 
1 

F ai%+ 12 5 + al&&l -_ (a22 - ag) y =: (02 - za,y Y = paa* -ZIP) Y 

1 
7 a12a3013 = agsyy, 

1 
CL 

a&&3 = - a,a,w, 6% = 0 (8.16) 

The boundary conditions on the lateral surface of the bar are now written 
in the form 
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a a 
-a 

aN N&h i_ N&, - = Nlaz- aa NY% 
where the operational notation is introduced. These are proportional to the 
normal and tangentla; derivatives with respect to the arc of the contour of 
the cross section of the bar. Solutions of Equations (8.10) and (8.14) are 
sought In the form 

Qs = 2 (4% (a,, a,), Y = z (a& q (41, 4,) (8.10) 

and separation of the variable a3 leads to the differential equations 

Z" + J.22 =o, D2T, - h25;,2qs=0, J!FY - $;L"rl,4 (8.19) 

Cancelling the factor depending on the variable a3, we now write the 
boundary condltlons (8.17) for the functions q, and $ In the form 

where 

a; - N12&2 + 2N1N2432 +N22a22, 
a a 

a aNao - N1N2(aa2 --ala) +(N1'--a')&&. 

The assumption 

Z=GOS$ (h--G) (8.2i) 

satisfies the third condition of (8.5) on the upper end; the two remaining 
conditions are satisfied-on the average. This follows from the equilibrium 
equations (8.3) and the boundary conditions (8.4), since over the whole bar 

all 
ss 

a3%O+ 
$ 
(Nrslm +N2a2")da=0, 

ss 
6~d0=conSt 

and this constant Is e ual to zero a3.a 0 for a,= 0 , which la a 
consequence of (8.15),?8.16) (8.18) %?78.21). It Is also easy to prove 
that no torsional moment Is present; 
zero for all a3 

Its derivative 32 Is also equal to 

a2 
ss 

(a@2- a2021)d0 = - 
ss 

[a1(&61'+ a2az2)- 42(&&+ a2az1)] do= 

ZZ 
ss 

(612 - 021) do = 0 

We note In addition that at the lower end 
(8.7) and (8.13); 

Wg = 0, &WI = t$Wg = 0 from 
w1 and wZ can be made equal to zero at some point of the 

end a== 
end a== 

0 by the choice of the constants ~1" and wao . 
0 Is "clamped". 

In this sense the 

9. A bar of oiroular ocomm raotlon. With the obJect in view of examining 
an equilibrium shape in which the axis of the bar does not remain straight, 
let us assume (Q-1) 

‘p, = R, (hr) cos 0, $ = R (Ar) sin 8 
( 
X=~~,clJse=+, sin0 s + 

) 
The functions, R. and I) are determined in accordance with (8.19) by 

Equations 

R," +$Z?;+++?,=O, R" ++(~+-&)R=O (x=k) (9.2) 

The solutions of these equations that are flnlte at x = 0 are expressed 
In terms of a Bessel function with imaginary argument by 

R, = c,Z,(t,z), R=CZ,($) (9.3) 

where the constants C, are complex conjugates and C Is real. Substitution 
.20), taking (8.9) into account, leads to a system of equations which 
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Is linear In these constants 
a 

2 ( C, k, 
s=1 

+ $)&(P,) + $ Cl1 (PW 

a 

2 C,P,&(PJ + gsar, (p) 
[ 
1 - 2180 

PZl(P) I 
=o 

b-1 ( 
P,=Qc, P = a8 2, 

a1 1 
(9.4) 

2 

2 Cs(% + 1) ~P.J,(P,)- II +c&(P)=C 
8==1 

In obtaining this we have used the differential equations 
known transformations of Bessel functions, and the relation ( 

9.2), well 
.9). 

Equating the determinant of the system of equations (9.4) to zero, we 
arrive at an equation which relates the parameters xca and cga/aia. After 
dividing out (Cp'- Cl"), this equation reduces to real form, since Cla and 
Caa then enter only In terms of their sum and product. 'The computations are 
cumbersome, but only small values of the quantities xoa and 1 - 
which are of the same order of magnitude are of Interest. 

'/ala= 6 
Then 

and ClaCpa differ from unity by terms of order 
4 ta+ Cg) 

E , according to Ii .ll). 

Retaining only linear and quadratic terms in c and roa, we have 

2 (1 - q)s - l/ezoa (3 - 49) - 2 (1 - qlea + P/s (1 - q) + 26/1aleX2 + P-5) 

+ P/la-‘/s (1 - 911 20’ = 0 
Dropping nonlinear terms, we find in the first approximation that 

a 2 3-4q 
1-$=ed+ 2(i_q) = T(l +v) (9.6) 

Thus .x0'> 0 for c > 0 
Hone (4.10) and (4.11) we 

i.e. for a compressed bar. 
find In this approximation 

Returning to Equa- 

l-aeaz=:'/zlaa, IQI=ESo~=ESor~=EJBa=Q, (9.7) 

where, as was to be expected, Q, is the Ruler critical value of the com- 
pressive force (J is the moment of inertia of the cross section). 

In the second approximation 

s = '/a22 (1 $ v) - "/Ia (1 + '/34V - 'l/r@) Xo* (9.8) 

and again turning to Equations (4.10) and (4.11), we find 

IQI 11 17 l+@J~v-"/S# 

Q, f==l--xoa 2 ( --v+_ 2 3 l+U 1 (9.Y) 

sothatfor v-0 and v-4 we have, respectively, 

IQI 
QZ 1 - 3.08x02, IQI 

8 
Q~l4.5~~ (9.10) 

Ll 

10. 0-h and nhvr to the 11telwtum. The general tensorlal 
relations of the nonlinear theory of elasticit 
In Sections 1 to 4 are explained In the books T 

which were briefly enumerated 
1 to 33 and In paper [4]. 

The latter reference also contains an exhaustive bibliography on nonlinear 
continuum mechanics up to 1953. 

A derivation of the differential equations of equilibrium shapes near a 
given equl lbrium state using the energy method Is given In [5] and In Chap- 
ter IX of t6] A direct construction of the equations of statics of an lni- 
tlally stressid medium in the case of a general state of stress is carried 
out In Chapter IV of [l], and one based on an Intuitive geometric method is 
given In C73. The latter Is presented In greater detail In the book C83. 
The energy approach to the problem is also developed In the well mown 



papers [9 and lo]. The author of this paper la not aware of any works In 
which the bifurcation values of load parameters are found on the basis of 
an examlnatlon of a three-dimensional problem of equlllbrlum of an lnltlally 
stressed elastic body (Sections 8 and 9 sf the present paper). 
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